

Lentivirus Titer Determination

Speaker: Chi-long Lin May.,2008

Why do we need to get virus titer?

RNAi knockdown vs. Viral dose

Lentiviral stock titration-Protocol

Seeding cell

Virus infection / transduction Serial diluted virus incubate with cells (mix with polybrene and Spin)

Proper Antibiotic selection (optional)

Virus titer (TU/ml) determination

Optimization of lentiviral transduction

- Lentiviral transduction should be optimized for each cell line and cell-based assay.
- Parameters needed to be test before starting infections to determine the optimal conditions for a given experiment
 - Cell seeding density
 - Antibiotic concentration
 - Time-course

Cell seeding density/ Time-course

4 days (post-infection)

6 days (post-infection)

- Use of polybrene to enhance transduction
- Polybrene (hexadimethrine bromide) mediated transduction of lentivirus can enhance transduction efficiency
- Determine experimental cell's sensitivity to polybrene. (range from 0-10 ug/ml)
- Protamine sulfate could be an alternative to enhance transduction efficiency.

Howard et al (2004). Biophysical Journal 86: 1234–42.

- Perform spin infection or just leave overnight without spin
- > Spin infection condition:
 - Speed: 1170g
 - Time: 30 ~90 min. at 37℃ or RT
 - Remove virus immediately after spin and replace with fresh medium

- Spin infection

A549 cell, 1170g, 37°C Polybrene: working concentration 8µg/ml

- Spin-infection vs. non-spin infection

A549 cell
Polybrene: working concentration 8µg/ml

-Antibiotic (puromycin) concentration

Virus stock titration-Methods

- > Relative virus titer determination
 - Relative infection unit (RIU)/ml
 - Puromycin selection / cell viability assay.

- End point dilution or limiting dilution method
 - Colony formation unit (CFU)/ml
 - Puromycin selection / colonies counting
- GFP expressed detection
 - Transduction Unit/ml or TU/ml
 - FACS analysis

- Day 1 Seed A549 cells 6000/well at 96 well plate
- Day 2 Prepare virus dilutions
 Add diluted virus to cells in media
 containing polybrene
 Centrifuge cells
- Day 3 24 hours after virus addition: Change media with culture media containing puromycin
- Day 5

 48 hours after puromycin addition:
 Remove media; replace with phenol red
 free media containing 10% MTS.
 After 40-50 minutes incubation, record the
 absorbance at 490 nm using plate reader.
 Define the liner range to determine the
 relative titer

Day 1 Seed A549 cells 6000/well at 96 well plate

Day 2 Prepare virus dilutions

Add diluted virus to cells in media containing polybrene Centrifuge cells

Day 3 24 hours after virus addition: Change media with culture media containing puromycin

Γ	Make standard viruses as follows: (Use a new tip for each dilution)													
ı	Dilution number	1	2	3	4	5	6	7	8	9	10	11	12	
	Volume (µl) corresponding to stock virus in per 5µL transduction	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03	
	Media added (µl)	75	30	40	60	30	40	60	40	60	100	100	67	
	shLuc#221 virus stock or previous diluted virus added (µl)	75	120	120	120	120	120	120	120	120	100	100	100	
1,	Total volume (μl)	150	150	160	180	150	160	180	160	180	200	200	167	
ĺ	Removed volume to next well/ dilution (µl)	120	120	120	120	120	120	120	120	100	100	100	0	
	Remaining volume for transduction (μl)	30	30	40	60	30	40	60	40	80	100	100	167	

Day 5

A8 hours after puromycin addition:

Remove media; replace with phenol red free media containing 10% MTS.

After 40-50 minutes incubation, record the absorbance at 490 nm using plate reader.

Define the liner range to determine the relative titer

Seed A549 cells 6000/well at 96 well plate Day 1

Prepare virus dilutions

Centrifuge cells

Day 3 24 hours after virus addition: Change media with culture media containing puromycin

	Value in each well represents stock virus in per 5μL infection (shLuc#221)														
	1	2	3	4	5	6	7	8	9	10	11	12			
Α															
В	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
С	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
D	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
Ε	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
F							Tested #1	Tested #2							
G							Tested #1	Tested #2							

Day 5 48 hours after puromycin addition:

Remove media; replace with phenol red free

media containing 10% MTS.

After 40-50 minutes incubation, record the absorbance at 490 nm using plate reader. Define the liner range to determine the

relative titer

- Day 1 Seed A549 cells 6000/well at 96 well plate
- Day 2 Prepare virus dilutions

 Add diluted virus to cells in media
 containing polybrene
 Centrifuge cells 1170g 30 min. at 37°C
 then return to incubator
- Day 3 24 hours after virus addition: Change media with culture media containing puromycin
- Day 5

 48 hours after puromycin addition:
 Remove media; replace with phenol red
 free media containing 10% MTS.
 After 40-50 minutes incubation, record the
 absorbance at 490 nm using plate reader.
 Define the liner range to determine the
 relative titer

- Day 1 Seed A549 cells 6000/well at 96 well plate
- Day 2 Prepare virus dilutions
 Add diluted virus to cells in media
 containing polybrene
 Centrifuge cells
- Day 3 24 hours after virus addition: Change media with culture media containing puromycin

Day 5

A8 hours after puromycin addition:

Remove media; replace with phenol red free media containing 10% MTS.

After 40-50 minutes incubation, record the absorbance at 490 nm using plate reader.

Define the liner range to determine the relative titer

	Value in each well represents stock virus in per 5μL infection (shLuc#221)														
	1	2	3	4	5	6	7	8	9	10	11	12			
Α															
В	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
С	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
D	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
Ε	2.5	2	1.5	1	0.8	0.6	0.4	0.3	0.2	0.1	0.05	0.03			
F							Tested #1	Tested #2							
G					Tested #1	Tested #2									

Mock

Day 1 Seed A549 cells 6000/well at 96 well plate

Day 2 Prepare virus dilutions
Add diluted virus to cells in media
containing polybrene
Centrifuge cells

Day 3 24 hours after virus addition: Chang media with culture media containing puromycin

Raw MTS da	Raw MTS data														
Standard	2.00	1.50	1.00	0.80	0.60	0.40	0.30	0.20	0.10	0.05	0.03	0.00			
В	1.3501	1.3608	1.2888	1.2416	1.1512	1.0561	0.855	0.585	0.322	0.2071	0.1529	0			
С	1.3356	1.3216	1.2918	1.293	1.1451	1.09	0.9395	0.5973	0.3437	0.2137	0.1461	0			
D	1.3283	1.36	1.3505	1.282	1.2211	1.0839	0.9994	0.6413	0.3342	0.2035	0.1361	0			
E	1.3741	1.2942	1.3319	1.307	1.2275	1.1451	0.9733	0.7213	0.3409	0.2203	0.1458	0			
Control	1.3971	1.3963	0.1066	0.1046	1.29	1.29									
Average	1.29														
CV %	1.50	2.42	2.31	2.20	3.72	3.41	6.67	9.69	2.88	3.51	4.76	#DIV/0!			

Day 5

48 hours after puromycin addition:
Remove media; replace with phenol red
free media containing 10% MTS.
After 40-50 minutes incubation, record the
absorbance at 490 nm using plate reader.
Define the liner range to determine the
relative titer

Day 1	Seed A549 cells 6 Cell survival percentage													
Day 2	Prepare virus dilut	Standard												
Day Z	Add diluted virus t	В	96,39	97.22	91.64	87.99	80.99	73.62	58.04	37.13	16.76	7.86	3.66	-8.18
	containing polybre	C	95.27	94.18	91.88	91.97	80.51	76.25	64.59	38.08	18.44	8.37	3.14	-8.18
	Centrifuge cells	D	94.70	97.16	96.42	91.12	86.40	75.77	69.23	41.49	17.71	7.58	2.36	-8.18
Doy 2	24 hours ofter viru	E	98.25	92.06	94.98	93.05	86.89	80.51	67.21	47.69	18.22	8.88	3.11	-8.18
Day 3	24 hours after viru	21/21/2012	96 15	QE 16	02 72	94.02	92.70	76 FA	GA 77	/1 10	12.19	9.49	3.07	0.00

Day 3 24 hours after viru media with culture puromycin

Day 5

48 hours after pure
Remove media; re
free media contain
After 40-50 minute
absorbance at 490

Standard virus titer

12954

Define the liner range to determine the relative titer

Raw MTS dat	Raw MTS data														
Standard	2.00	1.50	1.00	0.80	0.60	0.40	0.30	0.20	0.10	0.05	0.03	0.00			
В	1.3501	1.3608	1.2888	1.2416	1.1512	1.0561	0.855	0.585	0.322	0.2071	0.1529	0			
С	1.3356	1.3216	1.2918	1.293	1.1451	1.09	0.9395	0.5973	0.3437	0.2137	0.1461	0			
D	1.3283	1.36	1.3505	1.282	1.2211	1.0839	0.9994	0.6413	0.3342	0.2035	0.1361	0			
E	1.3741	1.2942	1.3319	1.307	1.2275	1.1451	0.9733	0.7213	0.3409	0.2203	0.1458	0			
Control	1.3971	1.3963	0.1066	0.1046	1.29	1.29									
Average	1.29														
CV %	1.50	2.42	2.31	2.20	3.72	3.41	6.67	9.69	2.88	3.51	4.76	####			
I survival perce	entage														
Standard	2.00	1.50	1.00	0.80	0.60	0.40	0.30	0.20	0.10	0.05	0.03	0.00			
В	96.39	97.22	91.64	87.99	80.99	73.62	58.04	37.13	16.76	7.86	3.66	####			
C	95.27	94.18	91.88	91.97	80.51	76.25	64.59	38.08	18.44	8.37	3.14	####			
D E	94.70 98.25	97.16 92.06	96.42 94.98	91.12 93.05	86.40 86.89	75.77 80.51	69.23 67.21	41.49 47.69	17.71 18.22	7.58 8.88	2.36 3.11	#### ####			
average	96.15	95.16	93.73	91.03	83.70	76.54	64.77	41.10	18.12	8.18	3.07	0.00			
I survival perce	entage														
Standard	2.00					0.40	0.30								
В	96.39	97.22	91.64	87.99	80.99	73.62	58.04	37.13	16.76	7.86	3.66	####			
С	95.27	94.18	91.88	91.97	80.51	76.25	64.59	38.08	18.44	8.37	3.14	####			
D	94.70	97.16	96.42	91.12	86.40	75.77	69.23	41.49	17.71	7.58	2.36	####			
E	98.25	92.06	94.98	93.05	86.89	80.51	67.21	47.69	18.22	8.88	3.11	####			
average						76.54	64.77								

Day 1 Seed A549 cells 2X10 5/well at 6 well plate

Day 2 Prepare virus dilutions
Add diluted virus to cells in media
containing polybrene
Centrifuge cells

Day 3 24 hours after virus addition: Change media with culture media without puromycin

Day 4 48 hours after virus addition: Change media with culture media containing puromycin

Day 5-14 Replace medium with fresh medium containing puromycin every 3–4 days.

Day 14 Remove the medium and gently wash each well with 3ml PBS once.

Add 1 ml crystal violet solution and incubate 10 minutes at room temperature.

End point dilution or limiting dilution method Seed A549 cells 2X10 5/well at 6 well plate

Day 1

Add diluted virus to cells in media containing polybrene

Centrifuge cells

2 mL 10-fold serial dilutions ranging from 10-2 to 10-6 in 15 ml conical vials.

Mix gently by inverting the tubes 10 times.

24 hours after virus addition: Change Day 3 media with culture media without puromycin

Day 4 48 hours after virus addition: Change media with culture media containing puromycin

Day 5-14 Replace medium with fresh medium containing puromycin every 3-4 days.

Day 14 Remove the medium and gently wash each well with 3ml PBS once. Add 1 ml crystal violet solution and incubate

10 minutes at room temperature.

End point dilution or limiting dilution method Seed A549 cells 2X10 5/well at 6 well plate

Day 1

Prepare virus dilutions

Day 3 24 hours after virus addition: Change

media with culture media without

puromycin

Day 4 48 hours after virus addition: Change

media with culture media containing

puromycin

Add 1 ml culture medium containing polybrene to one well as a mock control.

Add 1ml of each of diluted virus to the remaining wells of the plate.

Day 5-14 Replace medium with fresh medium containing puromycin every 3-4 days.

Day 14 Remove the medium and gently wash each

well with 3ml PBS once.

Add 1 ml crystal violet solution and incubate

10 minutes at room temperature.

Count the blue stained colonies

- Day 1 Seed A549 cells 2X10 5/well at 6 well plate
- Day 2 Prepare virus dilutions

 Add diluted virus to cells in media containing polybrene

 Centrifuge cells
- Day 3 24 hours after virus addition: Change media with culture media without puromycin
- Day 4 48 hours after virus addition: Change media with culture media containing puromycin
- Day 5-14 Replace medium with fresh medium containing puromycin every 3–4 days.
- Day 14 Remove the medium and gently wash each well with 3ml PBS once.

 Add 1 ml crystal violet solution and incubate 10 minutes at room temperature.

 Count the blue-stained colonies.

- Day 1 Seed A549 cells 2X10 5/well at 6 well plate
- Day 2 Prepare virus dilutions
 Add diluted virus to cells in media
 containing polybrene
 Centrifuge cells
- Day 3 24 hours after virus addition: Change media with culture media without puromycin
- Day 4 48 hours after virus addition: Change media with culture media containing puromycin
- Day 5-14 Replace medium with fresh medium containing puromycin every 3–4 days.
- Day 14 Remove the medium and gently wash each well with 3ml PBS once.

 Add 1 ml crystal violet solution and incubate 10 minutes at room temperature.

 Count the blue-stained colonies.

Day 1 Seed A549 cells 2X10 5/well at 6 well plate

Day 2 Prepare virus dilutions

Add diluted virus to cells in media

containing polybrene

Centrifuge cells

Day 3 24 hours after virus addition: Change

media with culture media without

puromycin

Day 4 48 hours after virus addition: Change

media with culture media containing

puromycin

Day 5-14 Replace medium with fresh medium

containing puromycin every 3-4 days.

Day 14 Remove the medium and gently wash each

well with 3ml PBS once.

Add 1 ml crystal violet solution and incubate

10 minutes at room temperature.

Count the blue-stained colonies

Titer of the lentiviral stock was determined by: Number of clonies × Folds of dilution (transducting units/ml; TU/mL).

Example: The colony counts were shown at table,

Dilution	Mock	10-2	10 ⁻³	10 ⁻⁴	10-5	10-6
number of colony	No colonies	UD*	UD	UD	38	4

*UD: undeterminable

Thus, the titer of the lentiviral stock is 3.9×10^6 TU/ml (i.e. average of 3.8×10^5 and 4×10^6)

Critical Factors Affecting Virus Titer

- Storage time for lentivirus stock. -80°C, > 6 months → re-titration
- Number of freeze/thaw cycles.
 Virus titer decreases by 5-10% with each freeze/thaw cycle
- Storage condition of lentivirus stock. Aliquot & store at -80°C temperature

How to Convert Virus Titer on different cell lines

$TU_N = TU_O \times (TU_R \div TU_S)$

TU_N=換算後,相對在實驗細胞株之Lentivirus-X的RIU

TU₀=利用A549細胞測量之Lentivirus-X RIU (由RNAi Core 提供)

TU_R=利用實驗細胞株測量所得的標準病毒的RIU

TU_s=利用A549細胞測量所得的的標準病毒的RIU (由RNAi Core 提供)

How to Convert Virus Titer on different cell lines

A549

S

shLuc virus 1x10⁴ RIU/ul

Lentivirus X1...Xn 3x10⁴ ...9x10³ RIU/ul

shLuc virus

1x103 RIU/ul

Lentivirus Xn

2 RIU/ul

How to Convert Viruses Titer on different cell lines

$$TU_{N} = TU_{O} \times (TU_{R} \div TU_{S})$$
3x10³ 3x10⁴ 1x10³ 1x10⁴

TU_N=換算後,相對在S細胞之Lentivirus-X1的RIU

TU_O=利用A549細胞測量之Lentivirus-X1的RIU (由RNAi Core 提供)
3x104 RIU/ul

TU_R=利用S細胞株測量所得的標準病毒的RIU

1x10³ RIU/ul

TU_S=利用A549細胞測量所得的的標準病毒的RIU (由RNAi Core 提供) 1x10⁴ RIU/ul

Thank You

Protamine sulfate

- Protamine sulfate is a small cationic protein that binds and precipitates DNA. It may be used for the removal of DNA from protein samples or the purification of DNA binding proteins.
- Protamine sulfate may also be used as an alternative to polybrene in retroviral mediated gene transfer.
- Protamine sulfate is a drug that reverses the anticoagulant effects of heparin by binding to it.
- Protamine was formerly isolated from the sperm of various fish, but is now produced through recombinant biotechnology.
- It is a highly cationic peptide.
- It binds to heparin to form a stable ion pair which does not have anticoagulant activity.
- This complex is then removed and broken down by the reticuloendothelial system.
- Cornetta, K., and Anderson, W. F., Protamine Sulfate as an Effective Alternative to Polybrene in Retroviral-mediated Gene-transfer: Implications for Human Gene Therapy. J. Virol. Methods, 23(2),187-194 (1989).

Polybrene

- Polybrene (hexadimethrine bromide) is a cationic polymer used to increase the efficiency of infection of certain cells with a retrovirus in cell culture.
- Polybrene acts by neutralizing the charge repulsion between the virions and cell surface.
- It has other uses, including a role in protein sequencing.
- Howard E. Davis, Matthew Rosinski, Jeffrey R. Morgan and Martin L. Yarmush, et al (2004). "Charged Polymers Modulate Retrovirus Transduction via Membrane Charge Neutralization and Virus Aggregation.". Biophysical Journal 86: 1234–42.