9/30/05

Section III: Lentiviral Infection

Introduction:

This section contains protocols for large scale (6 cm plates) and high throughput (96-well and 384-well) lentiviral infections to achieve stable shRNA-mediated target gene knockdown.

Lentiviral infection consists of the following steps:

Day 0-1	Seed cells
Day 1	Add lentivirus to cells in growth media containing polybrene
	(optional for 96-well infections: centrifuge cells to promote infection)
Day 1-2	Remove media and replace with fresh growth media
Day 2+	(optional) Select for infected cells with media containing puromycin
Day 4+	Assay infected cells

All lentiviral procedures should be carried out in accordance with biosafety requirements of the host institution.

Part 1: Lentiviral Infection in 6 cm plates

I. Materials

6 cm tissue culture plates (appropriate for cell-based assay)
Human or mouse cell line and appropriate growth media
Reagents required for cell-based assay
Polybrene (Hexadimethrine bromide; Sigma #H9268) or Protamine sulfate (MP Biomedicals #194729)
(Optional) Puromycin Dihydrochloride (Sigma #P8833)

II. Instructions

A. Optimization of lentiviral infection

Lentiviral infections should be optimized for each cell line and cell-based assay. For example, the following parameters should be tested before starting large-scale infections to determine the optimal conditions for a given experiment:

- Cell seeding density
- Amount of lentivirus
- Puromycin concentration
- Timecourse

B. Infection protocol

- 1. Seed cells at appropriate density in 6 mL media in 6 cm plates.
 - a. Adherent cells: seed 1 day prior to infection. Incubate overnight (37 °C, 5% CO₂).
 - b. Suspension cells: seed day of infection in media containing polybrene* (see table in step 2a).

2. Add virus to cells:

a. (Adherent cells) Remove growth media and add fresh media containing polybrene* (see table). Alternatively, remove a portion of the growth media and supplement with media containing polybrene. Adjust volumes and polybrene concentration to achieve the correct final polybrene concentration.

Reagent	Per 6 cm plate	
Media containing polybrene*	to 6 mL	
Final polybrene concentration	8 μg/mL	
Virus (added in step 2b)		
High MOI	≥0.5 mL	
Low MOI	≤0.1 mL	

^{*} Protamine sulfate may be substituted if polybrene is toxic to cells.

b. Add virus to cells (see table in step 2a).

3. Viral infection:

- a. Incubate cells overnight (37 °C, 5% CO₂).
- b. Change media 24 hours post-infection. Remove media and replace with 6 mL fresh growth media. If puromycin selection is desired, use fresh growth media containing puromycin.
 Note: Puromycin concentration should be optimized for each cell line; typical concentrations range from 2-5 μg/mL.
- 4. Incubate cells (37 °C, 5% CO₂), replacing growth media (with puromycin, if desired) as needed every few days. Incubation periods are highly dependent on the post-infection assay. Puromycin selection requires at least 48 hours. The following recommendations are general guidelines only, and should be optimized for a given cell line and assay.

Post-infection assay	Incubation time post-infection	Incubation time with puromycin selection
mRNA knockdown (qPCR)	3+ days	2+ days
Protein knockdown (Western)	4+ days	3+ days
Phenotypic assay	4+ days	3+ days

5. Assay infected cells.

Part 2: Lentiviral Infection in 96-well or 384-well plates (high throughput)

I. Materials

96-well or 384-well tissue culture plates

Human or mouse cell line and appropriate growth media

Polybrene (Hexadimethrine bromide; Sigma H 9268) or Protamine sulfate (MP Biomedicals #194729)

(Optional) Puromycin Dihydrochloride (Sigma #P8833)

II. Instructions

A. Optimization of lentiviral infection

Lentiviral infections should be optimized for each cell line and cell-based assay. For example, the following parameters should be tested before starting large-scale infections to determine the optimal conditions for a given experiment:

- Cell seeding density
- Amount of lentivirus
- Puromycin concentration
- Timecourse

B. Infection protocol

- 1. Seed cells at appropriate density in 96-well (100 μ L per well) or 384-well (50 μ L per well) tissue culture plates.
 - a. Adherent cells: seed 1 day prior to infection. Allow seeded plates to sit undisturbed at room temperature for at least 1 hour before transferring to a tissue culture incubator overnight (37 °C, 5% CO₂).

Note: allowing cells to settle at room temperature can reduce well-to-well variability and edge effects in 96-well plates.

- b. Suspension cells: seed day of infection in media containing polybrene* (see table in step 2a).
- 2. Add virus to cells.
 - a. (Adherent cells) Remove growth media and add fresh media containing polybrene* (see table). Alternatively, remove a portion of the growth media and supplement with media containing polybrene to achieve a final polybrene concentration of 8 μg/mL (following addition of virus).

Reagent	per well, 96-well plate	per well, 384-well plate
Media containing polybrene*	to 100 μL	to 50 μL
Final polybrene concentration	8 μg/mL	8 μg/mL
Virus (added in step 2b)		
High MOI	5 to 20 μL	2 to 5 μL
Low MOI**	≤1 to 3 μL	N.D.

^{*} Protamine sulfate may be substituted if polybrene is toxic to cells.

b. Add virus to cells (see table in step 2a).

Note: The indicated range of viral volume for high and low MOI infections assume typical viral yields from the 96-well viral preparation method described in Section II.

3. Option 1: Spin infection

- a. Spin cells at 2250 RPM in plate for 90 minutes at 37 °C. Centrifugation can improve viral infection and decreases the length of exposure of cells to polybrene and virus.

 Note: Centrifugation is not recommended for 6-well plates or larger, as cells may not be fully covered with media during the spin.
- b. Change media immediately following spin infection. Remove media and replace with 100 μ L (96-well plates) or 50 μ L (384 well plates) fresh growth media.
- c. Incubate cells overnight (37 °C, 5% CO₂).

^{**} Low MOI infections may require dilution of virus stock prior to addition to cells.

d. If puromycin selection is desired, remove media 24 hours post-infection and replace with 100 μL (96-well plates) or 50 μL (384 well plates) fresh growth media containing puromycin.

Note: Puromycin concentration should be optimized for each cell line; typical concentrations range from 2-5 μg/mL.

Option 2: No-spin infection

- a. Incubate cells overnight (37 °C, 5% CO₂).
- b. Change media 24 hours post-infection. Remove media and replace with 100 μ L (96-well plates) or 50 μ L (384 well plates) fresh growth media. If puromycin selection is desired, use fresh growth media containing puromycin.
 - Note: Puromycin concentration should be optimized for each cell line; typical concentrations range from 2-5 μ g/mL.
- 4. Incubate cells, replacing growth media (with puromycin, if desired) as needed every few days. Incubation periods are highly dependent on the post-infection assay. Puromycin selection requires at least 48 hours. The following recommendations are general guidelines only, and should be optimized for a given cell line and assay.

Post-infection assay	Incubation time post-infection	Incubation time with puromycin selection
Viral titer (Puromycin selection/cell viability)	3+ days	2+ days
mRNA knockdown (qPCR)	3+ days	2+ days
Protein knockdown (Western)	4+ days	3+ days
Phenotypic assay	4+ days	3+ days

5. Assay infected cells.